
 
 

 

Journal of Mechanical Science and Technology 26 (12) (2012) 3795~3801 

www.springerlink.com/content/1738-494x 

DOI 10.1007/s12206-012-1006-2 

 

 

 

 

On the dynamics of capillary imbibition† 

Jungchul Kim and Ho-Young Kim* 

School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-744, Korea  

 

(Manuscript Received May 15, 2012; Revised July 9, 2012; Accepted July 23, 2012)   

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 

The imbibition of wetting liquids in porous media takes place on length scales spanning several orders of magnitude, in phenomena 

ranging from landslide due to heavy rainfall in geophysics to stiction of nanopatterns in semiconductor manufacturing. We review the 

current theoretical understanding of the dynamics of liquid infiltration that are driven by capillary forces and resisted by viscous friction. 

Physical principles that govern the flows in smooth channels and porous media, either with or without gravitational effects, are explained 

with simplified mathematical solutions. Also, some important but unexplored topics associated with capillary imbibition are suggested.  
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1. Introduction 

When a liquid drop is brought into contact with a wettable 

solid surface, it spontaneously spreads over the surface. It is 

the capillary force that drives the flow to minimize the free 

energy of the solid-liquid-gas system [1]. Wettable solids are 

energetically more stable when wet than dry. The same physi-

cal principle is at work for wettable narrow channels or porous 

media contacting liquids. They imbibe liquids by capillary 

action. Natural and industrial processes associated with capil-

lary impregnation abound, including ink on paper, dye in fab-

ric, oil in a porous rock, water in soil, sap in xylem or a 

biofluid in cartilage. Capillary phenomena also play an impor-

tant role in various fields of nano- and bio-technology. Nano-

scale patterns on semiconductor wafers may stick together due 

to the surface tension of an evaporating rinsing solution [2, 3], 

which is one of the major problems deteriorating production 

yield. Many lab-on-a-chip systems rely on capillary forces to 

pump liquid into channels [4, 5]. 

From a fluid-dynamic point of view, the wicking flows are 

often laminar and slow, the analysis for which can be consid-

ered classical if the effects of the liquid front, or contact line, 

can be neglected. Major difficulties of understanding the dy-

namics of wicking come from the incomplete knowledge of 

formation and motion of three-phase (solid-liquid-fluid) con-

tact lines. Furthermore, the inherently complex geometry of 

pore structures in most porous media aggravates theoretical 

understanding and experimental measurements of wicking 

flows. As a result, a number of unanswered capillary-

imbibition problems remain, which occur in various fields of 

science and engineering. 

In the following, we review the current understanding of the 

capillary imbibition dynamics by classifying the flows by the 

character of solid (or fluid conduit): flows in smooth channels 

and porous media. In Section 2, we introduce governing equa-

tions for capillary flows in smooth channels and explain vari-

ous characters of the flows when the channels are horizontal 

and vertical. Flows wicking into porous media are treated in 

Section 3, where the basic analysis tools and important flow 

characteristics are introduced. We conclude by suggesting 

some mundane but practically important problems that wait 

for theoretical explanations and experimental measurements.  

 

2. Capillary flows in smooth channels 

2.1 Governing equations and boundary conditions 

In most cases, inertial effects in capillary flows are negligi-

bly small compared to other effects due to capillarity and vis-

cosity. This does not necessarily imply that the Reynolds 

number of the flow is much smaller than unity. Even when the 

Reynolds number is not small, the thinness of fluid conduits 

often allows us to neglect inertia, or to use the lubrication 

approximation [6, 7]. For a flow in a capillary with a radius a 

and an axial length L, one can show that the flow velocity, u, 

is dominantly in the axial direction (x) and only varies in radial 

direction (r) provided that / 1a L≪  and 2( / ) Re 1a L ≪ , 

where the Reynolds number is defined as Re /Uaρ µ=  with 

ρ and µ being the density and the viscosity of the liquid, re-
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spectively, and U the average velocity. Also, it follows that the 

pressure, p, is a function of the axial direction, x, and time (if 

unsteady), t, only. Then the governing equation becomes, in 

cylindrical coordinates, 

 

( , ) 1 ( , )p x t u r t
r

x r r r
µ

∂ ∂ ∂ 
=  ∂ ∂ ∂ 

. (1) 

 

The radius a may be allowed to vary slowly with either t or 

x while still using Eq. (1) because the one-dimensional, fully-

developed character of the flow still holds. When Re is much 

smaller than unity, we need not resort to the lubrication ap-

proximation in order to neglect inertia forces - the Stokes 

equation can be formally used:  

 
2p uµ∇ = ∇ . (2) 

 

The velocity of liquid at a solid wall follows that of the sol-

id in general, which is referred to as the no-slip boundary con-

dition. In microscale channel flows, however, the liquid has 

been observed to slip, or move with nonzero relative velocity, 

at the solid boundary when the solid is nonwettable and the 

shear rate is high [8-10]. Such a slip boundary condition may 

be considered irrelevant to wicking, which usually involves 

wettable solids. However, one needs to be cautious when ap-

plying the no-slip boundary condition at the moving contact 

line. Consider a contact line moving with a steady velocity U, 

or equivalently, a stationary contact line located on a substrate 

moving with a steady velocity U, as shown in Fig. 1. Here, we 

assume that the contact angle, θ, is small so that the lubrica-
tion equation can be used. The shear stress at the solid wall 

can be scaled as ~ / ,
s

Uτ µ δ  where δ is the height of the 
liquid-gas interface which can be approximated as .xδ θ≈  

Throughout this paper, θ denotes the contact angle either static 
or dynamic; the contact angle alone is a very rich topic, whose 

detailed discussion is beyond the scope of this work [11, 12]. 

The viscous shear force per unit depth, F, near the contact line 

is obtained by integrating τ from x = 0 to Λ, where Λ is the 
characteristic extension of the wedge:   

 

0
~

U
F dx

x
µ

θ

Λ

∫ . (3) 

 

This integration is logarithmically singular at x = 0. A simi-

lar logarithmic singularity of the shear force occurs when the 

contact angle is large as well [13-15]. This is the famous con-

tact line singularity, which inevitably occurs when the no-slip 

boundary condition is applied at the contact line. The singular-

ity is only relieved when the contact angle becomes 180º [16]. 

This mathematical singularity can be circumvented based on 

various physical arguments [11], including the statistical mo-

tion of fluid molecules [17], a diffuse interface model [18], etc. 

More conveniently, the integration can be cut off at a small 

distance λ from the contact line, which is argued to be of the 

order of molecular size [11, 14]. Then we get ~ ( / )F Uµ θ  

ln( / )λΛ  for either small or large value of the contact angle. 

The exact value of /λΛ  is not very important because its 

logarithmic value is used [15]. 

The shape of the liquid-fluid interface is determined by the 

kinematic and dynamic boundary conditions. When the equa-

tion of the interface is written as ( , , , ) 0,x y z tξ =  the kine-

matic boundary condition, which is based on mass conserva-

tion, is written as [19] 

 

0
d

dx

ξ
= . (4) 

 

The force balance at the interface yields the dynamic 

boundary conditions (DBC), which can be written in normal 

and tangential directions respectively as [6] 

 

,2 ,1

2 1 2 12 2
n n
u u

p p
n n

σκ µ µ
∂ ∂

− + = −
∂ ∂

, (5)  

,2 ,2 ,1 ,1

2 1

n nu u u u

n n

τ τ σ
µ µ

τ τ τ
∂ ∂ ∂ ∂    ∂

+ − + =   ∂ ∂ ∂ ∂ ∂   
, (6) 

 

where σ is the surface tension, κ is the curvature of the inter-
face, n and τ denote the normal and tangential directions, re-
spectively. Subscripts 1 and 2 denote the fluids separated by 

the interface. The normal DBC, Eq. (5), signifies that a jump 

in normal stress occurs across the interface, which is equal to 

the Laplace pressure, σκ. When the right-hand side of Eq. (5) 
is neglected, we recover the Young-Laplace equation: 

1 2
p p−  σκ= [22, 23]. The tangential DBC, Eq. (6), states 

that discontinuity in the shear stress at the interface arises 

when the surface tension gradient exists in the tangential di-

rection. This is a basic mechanism leading to the Marangoni 

flows [20]. 

 

2.2 Dynamics of imbibition into horizontal channels  

Consider a horizontal channel connected to a liquid reser-

voir on one side and exposed to the atmosphere on the other, 

as shown in Fig. 2(a). We are interested in predicting the cap-

illary imbibition velocity as a function of the liquid properties 

and channel geometry. The flow is driven by the pressure 

difference between the liquid front and the reservoir, 
1

,
a

p p−  

and resisted by the viscous stress. For a circular channel, Eq. 

(1) can be analytically solved to give the average imbibition 

 
 

Fig. 1. Schematic of a liquid wedge and moving contact line. The solid 

is shown to move with a relative velocity U to the stationary liquid-gas 

interface. 
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velocity / ,U Q A=  where Q is the volume flow rate and A is 

the cross-sectional area of the channel. However, for channels 

with noncircular cross-sectional shapes, e.g., polygons or el-

lipses, using the Darcy friction factor, fD , provides a more 

convenient path to obtain U. Here, fD is defined as 

 

2

2
h

D

dp D
f

dx Uρ
 

= − 
 

 (7) 

 

with Dh being the hydraulic diameter. For fully-developed 

flows, we can write fDRe = C, where the value of a constant   

C is known for various geometries [21]. For a circular channel 

with a radius a and a contact angle θ, /dp dx− =  
2 cos /( ),axσ θ  Dh = 2a, and C = 64. Hence, we get U =  

/dx dt− = cos /(8 )a xσ θ µ . Solving for x as a function of t 

leads to the so-called Washburn equation [24], stating that x 

diffusively increases with time: 

 
1/ 2( )x Dt=  (8) 

 

where the effective diffusivity 
1

cos /
4

D aσ θ µ= . Recently,  

Reyssat et al. [25] pointed out that Bell and Cameron [26] and  

Lucas [27] had found the result even before Washburn. 

In the following, we introduce an alternative approach that 

is more suited for deriving a scaling law of the wetting veloc-

ity on rough, as well as smooth, surfaces. For a smooth hori-

zontal channel, the surface free energy of the liquid-solid sys-

tem decreases with the capillary imbibition. As the liquid front 

propagates into the channel of the hydraulic diameter Dh by dx, 

the surface energy changes by ( ) ,
h SG SL

dE D dxπ σ σ= − −  

where σSG and σSL are the solid-gas and solid-liquid interfacial 
energy per unit area, respectively. The driving force Fd is then 

g iven  by / cos ,
d h
F dE dx Dπ σ θ= − = where  we  used 

Young’s equation [22], cos ,
LG SG SL

σ θ σ σ= −  where the 

liquid-gas interfacial energy per unit area .
LG

σ σ=  The re-

sisting force due to viscous shear stress, τs, is scaled as  

0
2 ,

x

r
F Udxπµ= ∫ where we have assumed that the dissipation 

in the region far from the contact line dominates over the dis- 

sipation at the contact line [15]. For flows with negligible 

inertia, the driving and resisting forces are balanced, ~ ,
d r
F F  

leading to the scaling relation of a capillary imbibition veloc-

ity, cos /( )
h

U D xσ θ µ= . 

 

2.3 Dynamics of capillary rise in vertical tubes  

Now we consider a channel situated along the gravitational 

direction as shown in Fig. 2(b). When the interior wall of the 

channel is wettable, the liquid rises against gravity, a phe-

nomenon called capillary rise. The equilibrium height at 

which the height of the liquid column, ρgV, with g being the 
gravitational acceleration and V the column volume, is bal-

anced by the upward surface tension force, cos ,
h

Dπ σ θ  is 
referred to as Jurin’s height after a British scientist who first 

observed this functional dependency in the early eighteenth 

century [28]. For a circular tube, Jurin’s height reads 

2 cos /( )
J
h gaσ θ ρ= . The rate of the capillary rise can be 

obtained in a similar manner to ones for the foregoing hori-

zontal imbibition but with / ( ) /dp dx gh hσκ ρ− = − , where h 

is the rise height. For a circular tube in which the velocity 

profile at any instant of time is assumed to be given by the 

Poiseuille profile, the equation of motion becomes [29] 

 
21 2 cos

8

dh a ga

dt h

µ θ ρ
σ σ

 
= − 

 
. (9) 

 

Integration gives the relationship between the rise time and 

height: 
 

1
ln
1 /

J J

h
t T

h h h

 
= − 

− 
 (10) 

 

where 28 /( )
J

T h gaµ ρ= . For short times when / 1,
J

h h ≪  

Eq. (10) is reduced to the Washburn equation. 

While the foregoing model assumes a fully developed ve-

locity profile, in the very early stages of capillary rise of liquid 

with a very low viscosity, the flow is resisted by inertia rather 

than viscous friction. It was shown that the liquid rises linearly 

with time in this regime, with the speed scaled as 
1/ 2~ [ /( )]c aσ ρ [30]. 

Unlike the capillary rise within a tube of a finite cross-

sectional area, the liquid in a sharp corner formed by two solid 

cylinders, as shown in Fig. 2(c), can rise without limit theo-

retically since the radius of the meniscus curvature can reach 

zero [31]. The flow is still driven by capillarity and resisted by 

gravity and viscosity. Thus, the following scaling relation 

based on the Stokes equation can be written: 
 

2
~

U
g

rh r

µ
ρ µ+  (11) 

 

where r is the characteristic radius of meniscus which changes 

with h. The radius of leading meniscus rL decreases as the 

liquid rises: 

 
1/ 3

2 2Lr
g t

µσ
ρ
 

=  
 

. (12) 

 
 

Fig. 2. (a) Capillary imbibition into a horizontal channel; (b) Capillary 

rise in a vertical tube; (c) Capillary rise in a corner. 
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For small rL, gravitational effects can be neglected and Eqs. 

(11) and (12) yield a scaling law for the height of capillary rise 

in a corner [31]: 

 
1/ 3

2

L

t
h

g

σ
µρ
 

=  
 

. (13) 

 

It is remarkable that the capillary rise in a corner follows a 

power law (t
1/3
) different from Washburn’s law (t

1/2
). 

 

3. Imbibition into porous media 

3.1 Horizontal flow 

The physics behind wicking into porous media is not fun-

damentally different from that of capillary imbibition into a 

smooth channel - capillary forces drive and viscous friction 

resists the flow, whose balance determines the flow velocity. 

A major difficulty in understanding the flow into porous me-

dia arises due to the complex internal geometry of the media; 

size, structure, tortuosity and wetted portion of pores that are 

hard to measure precisely. Such a problem is somewhat re-

lieved when the flow occurs over a porous, or rough, surface 

whose structure can be quantified easily compared to the pores 

within a bulk. When a liquid contacts a highly wettable sur-

face with sub-millimetric roughness, the surface is impreg-

nated with the liquid, as shown in Fig. 3. This process is re-

ferred to as hemi-wicking [32] since it corresponds to wicking 

on a two-dimensional surface, not wicking into three-

dimensional space. 

The decrease of the interfacial energy as a liquid front ad-

vances by dx is given by 

 

( )( ) (1 )
t SG SG t

dE f dx dxφ σ σ φ σ= − − − + −  (14) 

 

where f is the roughness defined as the ratio of the actual sur-

face area to the projected area and φt is the area fraction of the 
surface that remains dry. For a square pillar array as shown in 

Fig. 3, with cylinders of radius s, height b, and pitch w, the 

roughness f is given by 21 / .f sb wπ= +  The driving force is 

given by / ( 1)
d
F dE dx f σ= − = −  when the contact angle is 

nearly zero. 0
d
F =  for a smooth surface ( 1).f =  This im-

plies that hemi-wicking occurs only on rough surfaces - a 

different approach should be employed to analyze the spread-

ing on smooth surfaces [11, 33], which is beyond the scope of 

the current review. The friction on the rough surface arises 

from the liquid viscosity. When the protrusions (of a charac-

teristic height b) are short compared to the pitch (w) between 

them, i.e., b < w, the dominant friction is due to velocity gra-

dients over a distance b. Then the resisting force is given by 

~ / .
r
F Ux bµ  On the other hand, when ,b w≫  the friction 

predominantly takes place against the protrusions [34]. For 

cylindrical pillar arrays with a pillar radius s, ~ /
r
F Ubxµ  

2[ ln( / )]w w s . Srivastava et al. [35] derived scaling laws ap-

plicable to wide range of geometric factors, such as pillar size 

and pitch, using finite element simulations. As long as Fr is 

proportional to x, which is the case in hemi-wicking, balanc-

ing Fd and Fr yields the Washburn equation: 
1/ 2.x t∝  The 

axisymmetric hemi-wicking, which occurs as a fluid-filled pen 

gently touches a micropillar array, also exhibits the diffusive 

behavior: 
1/ 2
,R t∝  where R is the radius of the circular wet 

area [36]. 

Recently, it was found that the wet front can propagate over 

a rough surface in two qualitatively different modes, depend-

ing on the strength of liquid source (either a spreading drop or 

a tube that supplies liquid toward the edge). When a drop is 

deposited on a rough surface (e.g., a micropillar array), it ini-

tially spreads to develop a circular fringe layer while the cen-

tral bulk collapses. The radial extension of the thin film sur-

rounding the bulk shows diffusive behavior. However, in the 

late stages when the bulk is almost diminished, the fringe 

layer advances through faceted zippering as shown in Fig. 4. 

By zippering, we refer to the motion of a liquid front through 

which a dry row of pillars facing the existing wet row of pil-

lars is wetted as if the wet front were zipped. The wet area 

expands in a direction perpendicular to the rows going through 

consecutive zippering. This causes the final footprint to be 

polygonal, revealing the lattice structure of the micropillars 

[37]. The faceted zippering of a wet front can be also realized 

using a fluid-filled pen. If the pen is pressed so that no gap is 

present between the pen tip and the top of surface protrusions, 

the leakage of the bulk flow is prevented. Then the liquid may 

wet only through the spacing between the pillars. Such a zip-

pering front propagates under a power law (t
1/3
) different from 

the Washburn equation [38]. When the bulk leaks from the tip, 

 
 

Fig. 3. Hemi-wicking within porous surface. 

 

 

 
 

Fig. 4. Image sequence of zippering wet front. The liquid is water and 

the substrate is a superhydrophilic square array of silicon square mi-

cropillars with 25, 10 and 10 µm in pitch, height and side length, re-

spectively. Scale bar, 50 µm. 
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which is usually the case unless the conformal contact as de-

scribed above is achieved, the spreading front propagates axi-

symmetrically, obeying the Washburn law. 

As a liquid infiltrates into a bulk medium with complex 

pore network, simple hydrodynamic models as above are not 

applicable. It is known that the liquid velocity is proportional 

to the pressure gradient and inversely proportional to the vis-

cosity [39, 40]: 
 

k
u p

µ
= − ∇  (15) 

 

where k is the permeability. This equation, referred to as 

Darcy’s law, is widely used in engineering applications espe-

cially for Newtonian fluids at low flow rates [41]. The perme-

ability k depends on the size, concentration and arrangement 

of pore structures [42]. For fibrous porous media, e.g., fabrics 

and paper, k is a function of fiber radius (a), volume fraction 

of solid material (φ) and the fiber arrangement [42]: 
 

2
( )

k
f

a
φ= . (16) 

 

Fig. 5 shows the experimentally measured permeability of 

various fibrous media [42]. If x is the distance from the source 

to the edge of the wetting front, the velocity ~ / .u dx dt  Pro-

vided that the capillary pressure that drives the flow is kept 

constant, which is usually the case when the pore size ( 1~ κ − ) 

is uniform throughout the medium, we get ~ /p xσκ∇  

[43]. Then we can recover the Washburn equation, ~x  
1/ 2 1/ 2

( / ) ,k tσκ µ  from Eq. (15). 

 

3.2 Vertical flow 

As in the previous section, we start with the rise of a liquid 

through hemi-wicking along a vertically situated rough sur-

face. In early times, the dynamics are governed by capillarity 

and viscous resistance while gravity can be neglected [34]. 

Thus, the rise rate follows the Washburn law. Xiao et al. [44] 

obtained accurate values of the effective diffusivity D in Eq. 

(8) for micropillar arrays through simulations and experiments. 

In late times when the gravitational effects become significant, 

the rise rate greatly deviates from that of the Washburn equa-

tion. In addition to the hydrostatic effects, the liquid film 

thickness, which affects both the capillary pressure and vis-

cous shear stress, can change as a function of the height. This 

is a topic worthy of further exploration. 

For a liquid infiltrating into a bulk porous medium against 

gravity, a modified form of Darcy’s law is used: 

 

( )
k

u p gρ
µ

= − −∇ + . (17) 

 

If the liquid within the rigid porous medium is incompressi-

ble, we write 0.u∇⋅ =  Then Eq. (17) gives 2 0.p∇ =  Solv-

ing this Laplace equation with suitable boundary conditions 

for p can completely specify the flow via Eq. (17) [43]. For 

large enough times, the Washburn equation is known to fail to 

match experimental measurements in some types of porous 

media [45, 46]. Attempts have been made to explain power 

laws that are different from the Washburn equation in late 

times [46, 47]. Delker et al. [45] modeled the capillary rise 

dynamics in porous media as a metastable stick-slip behavior, 

and experimentally found that 3/ 4~u t −  in a packed bead 

structure, which gives the rise height 1/ 4~h t . In late times, 

pores are not necessarily filled completely with liquid because 

of significantly weakened driving forces. This may be an im-

portant reason why the rise rate does not obey the Washburn 

dynamics, although this possibility has not been theoretically 

explored yet. 

 

4. Conclusions 

We have reviewed the current understanding of the dynam-

ics of capillary imbibition into various types of solid structures. 

Although fundamental equations and solution methods have 

been established for many cases just as many other branches 

in fluid dynamics, still there are many important yet unex-

plored phenomena in this area. We conclude with briefly list-

ing these exciting novel problems awaiting mathematical 

modeling and quantitative experiments. First, with the rapid 

development of micro- and nano-scale fabrication technology, 

many thin structures are used as liquid channels. Because thin 

structures are inherently flexible, capillary flows in the chan-

nel can develop forces (by surface tension σ and capillary 
pressure σκ) strong enough to deform the channel [48-50]. 
The deformation of channel geometry alters the driving and 

resisting forces, which eventually modifies the capillary imbi-

bition rate [51, 52]. Second, besides thin-walled channels, 

many porous media found in natural and industrial situations, 

such as soil [53], paper [54], biological tissues [55] and food 

[56], are deformable. The interaction of deformable porous 

media with pressurized fluid flows has been intensively stud-

 
 

Fig. 5. Permeability of various fibrous media as a function of the solid 

volume fraction [42]. 
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ied since Biot [57], but one with flows driven by capillary 

forces has attracted little attention so far: in particular, cellu-

lose fiber networks, such as sponges [47] and paper, swell and 

soften as absorbing moisture. Then the pore size and tortuosity, 

and eventually, the capillary imbibition rate are altered. To 

one’s surprise, no theoretical tools exist to understand such 

ubiquitous phenomena. Lastly, chemical potential as well as 

mechanical pressure participates in liquid transport in some 

porous media, such as plant xylem and hydrogel. In general, 

the ability to absorb water increases as the solute concentra-

tion increases, which plant cells utilize to control the water 

transport rate [58]. Investigating this process can help us to 

understand how water can climb up in a tree as tall as 100 m 

without a mechanical pump [59] (meaning that water mole-

cules are under tension at 10 m or higher from the ground). 

Also, this study will allow us to control the deformation of 

hydrogels [60], which find a variety of applications in bio-

medical technology [61].  
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